Базовые знания о различных типах миксеров

Добро пожаловать в новый пост сегодня. Сегодня я познакомлю вас с базовыми знаниями о микшере.

Темы, затронутые в этой статье:

Ⅰ. Одинарный/двойной/тройной балансный пассивный микшер

Ⅱ. Микшер I/Q Image Reject (IRM)

Ⅲ. Активный микшер

Ⅳ. Встроенный смеситель с преобразованием частоты

 

Микшер, как следует из названия, объединяет два входных сигнала для генерации суммы или разности их частот. Это называется повышающим преобразованием, когда смеситель используется для получения выходной частоты, большей, чем входной сигнал (две частоты суммируются), и называется понижающим преобразованием, когда смеситель используется для создания выходной частоты ниже, чем входной сигнал.

 

Ⅰ. Одинарный/двойной/тройной балансный пассивный микшер

В целом пассивные микшеры отличаются своей простотой и отсутствием необходимости в дополнительной настройке или внешнем источнике постоянного тока. Широкая полоса пропускания, широкий динамический диапазон, низкий коэффициент шума (NF) и хорошая изоляция портов являются еще одними примечательными характеристиками микшера этого типа. Благодаря конструкции микшера этого типа и его преимуществу, заключающемуся в том, что он не требует внешнего источника питания постоянного тока, выходной сигнал микшера имеет очень низкий коэффициент шума. Хорошим обобщением является то, что коэффициент шума пассивного смесителя должен быть равен его потерям на преобразование. Эти микшеры идеально подходят для ситуаций, когда требуется низкий коэффициент шума, но которого не могут обеспечить активные микшеры. Этот тип смесителя также исключительно хорошо работает в системах с высокими частотами и широкой полосой пропускания. От радиочастотных до миллиметровых частот они обеспечивают хорошие характеристики. Изоляция между различными портами — еще одна важная особенность микшера. Эта функция часто определяет, какой микшер можно использовать для конкретного применения. Пассивные смесители с двойным балансом имеют сильную межпортовую развязку и более простую архитектуру, чем пассивные смесители с тройным балансом, которые часто имеют лучшие характеристики изоляции, но сложную архитектуру и, возможно, недостаточные другие качества (например, линейность и т. д.). Двойные балансные смесители обеспечивают наилучшую изоляцию, линейность и коэффициент шума для большинства применений.

С точки зрения всей сигнальной цепи линейность, которую часто количественно определяют с помощью точки пересечения третьего порядка IIP3, является одним из наиболее важных свойств радиочастотных и микроволновых устройств. Вообще говоря, пассивные смесители отличаются высокой линейностью. К сожалению, для оптимальной работы пассивных смесителей необходима значительная входная мощность гетеродина. Для работы большинства пассивных смесителей, в которых используются диоды или полевые транзисторы, требуется от 13 до 20 дБм сигнала гетеродина, что является относительно сильным для некоторых приложений. Самый большой недостаток пассивных микшеров – это высокие требования к мощности гетеродина. Потери преобразования на выходе смесителя — еще один недостаток пассивных смесителей. Поскольку эти смесители представляют собой пассивные компоненты без блоков усиления, на выходе смесителя часто возникают значительные потери сигнала. Например, если потери преобразования микшера составляют 9 дБ, а его входная мощность — 0 дБм, выходная мощность микшера будет равна -9 дБм. В целом, эти смесители отлично подходят для применения в военных целях и при проведении испытательных измерений.

 

Преимущества пассивных микшеров

 

широкая полоса пропускания

 

расширенный динамический диапазон

 

низкий коэффициент шума

 

Высокая изоляция между портами

 image

Рисунок 1. Блок-схема I/Q-смесителя и диаграмма частотной области подавления изображения.

 

Ⅱ. Микшер I/Q Image Reject (IRM)

I/Q-микшеры — это подкласс пассивных микшеров, которые обладают преимуществами традиционных пассивных микшеров, а также дополнительным преимуществом внутренней фильтрации нежелательных сигналов изображения. При использовании в качестве преобразователей с понижением частоты эти смесители также известны как IRM (микшеры с подавлением изображения), а при использовании в качестве преобразователей с повышением частоты они называются SSB (смесители с одной боковой полосой). Сигнал гетеродина разделяется пополам, а затем сдвигается по фазе на 90° (0° для одного смесителя и 90° для другого) в I/Q-смесителе, который состоит из двух двойных балансных смесителей. С помощью этого фазового сдвига смеситель может генерировать только нужный сигнал боковой полосы, отфильтровывая нежелательные сигналы.

На той же спектрограмме на рисунке 2 показаны характеристики I/Q-смесителя (фиолетовая кривая) и двухбалансного смесителя (синяя кривая). Как можно видеть, двойной балансный смеситель генерирует как высокие, так и низкие боковые полосы, но I/Q-смеситель уменьшает нежелательные низкие боковые полосы, предлагая подавление на 45 дБ.

image 

Рис. 2. График спектра пассивного смесителя HMC773A и I/Q-смесителя HMC8191 с входом ПЧ 1 ГГц и входом гетеродина 16 ГГц.

 

I/Q-смесители требуют высокого уровня входной мощности гетеродина, как и пассивные смесители с двойной балансировкой. Из-за особенностей конструкции I/Q-смесителя обычно требуется примерно на 3 дБ больше мощности гетеродина, чем двум смесителям с двойной балансировкой. I/Q-смесители чувствительны к точной балансировке входной амплитуды и согласованию фазы. На степень отклонения изображения будет напрямую влиять любое отклонение от 90° по фазе или амплитуде входного сигнала, структуры микширования, системной платы или самого микшера. Последствия этих неточностей можно уменьшить, выполнив внешнюю калибровку смесителя для повышения производительности.

I/Q-смесители часто используются в приложениях, где требуется удаление боковых полос без использования внешней фильтрации из-за их возможностей подавления боковых полос. Они также обеспечивают очень хороший коэффициент шума и линейность. Типичными примерами таких рынков являются микроволновая двухточечная транзитная связь, испытательное и измерительное оборудование, а также военное применение.

 

Преимущества I/Q-смесителей

 

Неотъемлемое отклонение изображения

 

Нет необходимости в дорогостоящей фильтрации.

 

Хорошее согласование амплитуды и фазы

 

Ⅲ. Активный микшер

Двумя основными разновидностями являются однобалансные и двухбалансные активные смесители, обычно называемые смесителями Гилберта. Встроенные блоки усиления на ВЧ-выходе и порте гетеродина являются преимуществом активных микшеров. Такие смесители имеют минимальные требования к входной мощности гетеродина и обеспечивают некоторый коэффициент усиления преобразования выходного сигнала. В отличие от большинства пассивных смесителей, типичная входная мощность гетеродина для активных смесителей близка к 0 дБм.

Умножитель частоты гетеродина, который используется для умножения частоты гетеродина на более высокую частоту, часто встроен в активные смесители. Заказчик получит большую выгоду от способности этого удвоителя частоты управлять смесителем без использования высокой частоты гетеродина. Межпортовая изоляция в активных микшерах часто бывает очень хорошей. Его недостатками являются высокий коэффициент шума и, в большинстве случаев, низкая линейность. На коэффициент шума и линейность активного смесителя влияет потребность в входном источнике питания постоянного тока. В коммуникационной и оборонной промышленности, где низкий уровень гетеродина и встроенный коэффициент преобразования могут иметь решающее значение, часто используются активные смесители. Активные смесители обычно используются в приборостроении низкого уровня или в качестве смесителя третьей или последней ступени в ПЧ-части испытательной и измерительной промышленности (интеграция и экономичная конструкция более важны, чем коэффициент шума).

 

Преимущества активных микшеров

 

Высокая интеграция, небольшой размер

 

Требования к приводу LO низкие

 

Встроенный удвоитель гетеродина

 

Хорошая изоляция, но плохая линейность и коэффициент шума.

 

Ⅳ. Встроенный смеситель с преобразованием частоты

В связи с растущей потребностью клиентов в более комплексных решениях для цепей передачи сигналов, интегрированные преобразователи частоты приобрели популярность. Эти устройства состоят из различных функциональных компонентов, которые объединены в подсистему, упрощая окончательную конструкцию системы для клиента. В одном корпусе или чипе эти устройства объединяют множество блоков, включая смесители, системы фазовой автоподстройки частоты (ФАПЧ), генераторы, управляемые напряжением (ГУН), умножители частоты, блоки усиления, детекторы и т. д. Такие устройства могут быть изготовлены в виде одного кристалла, который содержит все проектные блоки или в виде SIP (система в пакете), где множество кристаллов объединены в один пакет.

Преобразователи частоты могут предоставить разработчикам множество преимуществ за счет объединения множества устройств в одном чипе или корпусе, в том числе: меньший размер, меньшее количество компонентов, более простая архитектура конструкции и, что наиболее важно, более быстрый выход на рынок. быстрый.

 image

Рис. 3. Функциональная структурная схема встроенного преобразователя частоты HMC6147A.



Frequently Asked Questions

1. Что такое миксер?
Смеситель также называют преобразователем частоты (Variable- Frequency Drive, VFD), который представляет собой устройство управления мощностью, использующее технологию преобразования частоты и технологию микроэлектроники для управления двигателем переменного тока путем изменения частоты рабочего источника питания двигателя.
2. Как определяется шум смесителя?
Шум смесителя определяется как: NF=Pno/Pso Pno — общая мощность шума, передаваемая на выходной порт, когда шумовая температура на входном порту равна стандартной температуре на всех частотах, т.е. T0=290K.
3. В чем сходство и различие смесителя и преобразователя частоты?
То же самое: изменилась частота. Разница: 1. Разные частоты: микшер требует смешивания двух наборов сигналов с разными частотами, а преобразование частоты означает, что частота сигнала меняется. 2. Различные области применения: смесители используются в цепях связи, а преобразователи частоты – в силовых цепях. 3. Различные свойства: смеситель — это схема, частота выходного сигнала которой равна сумме, разности или другой комбинации частот двух входных сигналов. Преобразователь частоты представляет собой устройство управления мощностью, которое использует технологию преобразования частоты и технологию микроэлектроники для управления двигателем переменного тока путем изменения частоты рабочего источника питания двигателя.

Related Articles

Разборка и анализ каждого компонента импульсного источника питания

Release time:2023-12-28       Page View:135
Импульсный источник питания (сокращенно SMPS), также известный как импульсный источник питания, импульсный преобразователь, представляет собой высокочастотное устройство преобразования энергии...

Руководство по микросхеме зарядного устройства

Release time:2023-12-28       Page View:118
Основным компонентом зарядного устройства является ИС зарядного устройства, также известная как ИС зарядного устройства аккумулятора.Он играет жизненно важную роль в процессе зарядки.Микросхем...

Отладка импульсного блока питания: 10 наиболее распространенных проблем

Release time:2023-12-27       Page View:109
Привет всем, я Роуз.Сегодня я расскажу вам о 10 распространенных проблемах, связанных с отладкой SMPS.Импульсный источник питания (сокращенно SMPS), также известный как импульсный источник питания,...

QUIC: протокол связи следующего поколения

Release time:2023-12-27       Page View:93
Привет всем, я Роуз.Сегодня я познакомлю вас с QUIC.QUIC (Quick UDP Internet Connection) — это протокол транспортного уровня Интернета с малой задержкой на основе UDP, разработанный Google.Темы, затронутые в это...

Что такое межинтегральная схема (I2C)?

Release time:2023-12-27       Page View:187
Привет всем, я Роуз.Сегодня я познакомлю вас с I2C.Шина I2C — это простая двунаправленная двухпроводная синхронная последовательная шина, разработанная Philips.Для передачи информации между устройст...

Аналого-цифровые преобразователи (АЦП): разрешение расшифровки и частота дискретизации

Release time:2023-12-27       Page View:128
Разрешение и частота дискретизации — два важных фактора, которые следует учитывать при выборе аналого-цифрового преобразователя (АЦП).Чтобы полностью понять это, необходимо в некоторой степени по...

Шум импульсного регулятора: всестороннее понимание и анализ

Release time:2023-12-27       Page View:120
Пульсации переключения, широкополосный шум и высокочастотные выбросы — все это типы шума, встречающиеся в импульсных стабилизаторах, как описано в этой статье.Кроме того, в этой статье будет обсуж...

Основное руководство по преобразователю AC/DC, DC/DC

Release time:2023-12-25       Page View:139
Привет всем, я Роуз.Добро пожаловать в новый пост сегодня.В этой статье в основном представлены определения переменного и постоянного тока, преобразователя переменного/постоянного тока, а также п...

Контактор переменного тока: что такое самоблокирующийся?

Release time:2023-12-22       Page View:126
В контакторах переменного тока часто используются три метода гашения дуги: гашение электрической дуги двойным разрывом, гашение дуги продольного шва и гашение дуги сеткой.Он используется для уст...

Как выбрать MOSFET для импульсного источника питания?

Release time:2023-12-22       Page View:281
Металлооксидно-полупроводниковый полевой транзистор (MOSFET) — это полевой транзистор, который может широко использоваться в аналоговых и цифровых схемах. Эта статья поможет вам выбрать MOSFET д...

Meta-Vision для датчиков изображения CMOS: за пределами человеческого глаза

Release time:2023-12-16       Page View:144
Привет всем, я Роуз. Сегодня я познакомлю вас с своеобразным датчиком. Это датчик изображения CMOS. Датчик изображения CMOS — это типичный твердотельный датчик изображения, имеющий общее историчес...

ARM, FPGA, DSP и CPLD: связь и разница

Release time:2023-12-16       Page View:210
Привет всем, я Роуз. Добро пожаловать в новый пост сегодня. Я уверен, что вы знаете, что такое ARM, FPGA, DSP и CPLD. Но знаете ли вы их связь и различие? Позвольте мне представить вам.Темы, затронутые в...
RFQ
BOM