BSS123 vs BSS138: Which is Best?

N-Channel Logic Level Enhancement Mode Field Effect Transistor

IMAGE THUMBNAILURL

When it comes to selecting the right transistor for your electronic projects, it's important to consider various factors such as voltage, current, and applications. In this article, we will compare two popular MOSFET transistors, the BSS123 and the BSS138, and explore which one might be best suited for your needs.



BSS123 vs BSS138 Description

These N-Channel enhancement mode field effect transistors are manufactured using onsemi's exclusive DMOS technology, which features a high cell density. The aim of these transistors is to reduce on-state resistance while offering robust, dependable, and speedy switching capabilities. They are specifically well-suited for applications that involve low voltage, low current, such as controlling small servo motors, driving power MOSFET gates, and various other switching tasks.


BSS123 vs BSS138 Pinout

BSS123 VS BSS138 PINOUT


BSS123 vs BSS138 CAD-Model

BSS123 CAD-Model

Symbol

BSS123 SYMBOLpng

Footprint

BSS123 FOOTPRINT

3D-Model

BSS123 3D


BSS138 CAD-Model

Symbol

BSS123 SYMBOLpng

Footprint

BSS123 FOOTPRINT

3D-Model

BSS138 3D

BSS123 vs BSS138 Features


BSS123 vs BSS138 package

BSS123 Package

BSS123

BSS138 Package

BSS138 PACKAGE

First, let's understand the basic differences between the BSS123 and the BSS138. Both transistors are N-channel enhancement mode MOSFETs, which means they can be used as switches or amplifiers in electronic circuits. However, there are some key distinctions that set them apart.

 

The BSS123 is a low voltage, low current transistor with a maximum drain-source voltage (Vds) of 100V and a maximum drain current (Id) of 170mA. It is commonly used in low-power applications such as signal switching, level shifting, and small load driving. Due to its low voltage and current ratings, the BSS123 is not suitable for high-power applications.

 

On the other hand, the BSS138 is also a low voltage transistor but can handle higher currents compared to the BSS123. It has a maximum Vds of 50V and a maximum Id of 220mA. The BSS138 is often used in power management, motor control, and general-purpose switching applications, where slightly higher power requirements are needed.

 

So, which one is best for your project? It depends on your specific requirements. If you are working on a low-power circuit and need a transistor that can handle low voltage and current levels, the BSS123 might be the right choice. Its maximum Vds of 100V and maximum Id of 170mA make it suitable for such applications.

 

However, if your project involves higher current demands or you need a transistor for power management or general-purpose switching, the BSS138 would be a better option. With a maximum Vds of 50V and maximum Id of 220mA, it can handle slightly higher power requirements compared to the BSS123.

 

It's worth noting that both transistors are readily available and affordable, making them popular choices for hobbyists and professionals alike. Additionally, they are surface-mount devices (SMD), which means they are designed for use on PCBs and require soldering skills for installation.

 

In conclusion, when choosing between the BSS123 and the BSS138, it's crucial to consider the voltage and current requirements of your project. While the BSS123 is suitable for low-power applications, the BSS138 can handle higher currents and is better suited for power management and general-purpose switching. Carefully evaluate your project's needs and select the transistor that aligns with your specific requirements for optimal performance.


Visit to get BSS138 datasheet, BSS123 datasheet and specification

Related Articles

Comparison between RP2040, ESP8266, ESP32, STM32: Pinout

Release time:2023-09-26       Page View:1371
RP2040, ESP8266, ESP32, STM32 they are all microcontrollers. This article is going to talk about the differences between them.

18650 vs 21700 Battery: Similarities & Differences

Release time:2023-09-25       Page View:732
Hello, my friends. This post will bring you to the brief understanding of batteries and the differences between 18650 and 27100 from different viewpoints.

DS3231M+ RTC Module: A Timer pinout & PDF

Release time:2023-09-21       Page View:1254
16 Terminations 3.3V 16 Pin DS3231 Real Time Clocks Timer or RTC Subcategory Alarm, Leap Year, Square Wave Output 0.4MHz The DS3231M is a low-cost, high-precision I2C real-time clock (RTC).

How does 1N4007 Rctifier Diode work: Pinout & Uses

Release time:2023-09-21       Page View:523
1N4007: Standard Diode Rectifier 200mA (Io), Standard Recovery > 500ns 1.1V @ 1A -55°C~175°C 5μA @ 1000V DO-204AL, DO-41, and Axial Through Hole Cut Tape (CT). The 1N4007 belongs to the 1N400x series and is a PN junction rectifier diode.

How Does Diode 1N4148 Work: Datasheet, Circuit

Release time:2023-09-19       Page View:482
1N4148 Diode Rectifier Small Signal =< 200mA (Io), Any Speed 1V @ 10mA -65°C~175°C 5μA @ 75V Cut Tape (CT) DO-204AH, DO-35, Axial Through Hole

L293D & L293DD: Comparison, Datasheet

Release time:2023-09-19       Page View:477
1.2A mA 2mA mA 5.1mm mm 7.1mm mm Motor Drivers 16 5V V 4 20mm mm Hello, my dear friends, the topic of the blogs will be concerning L293D & L293DD, now let’s go thought these micro-controller!

How Motor Driver L298N Works: Datasheet, Circuit

Release time:2023-09-18       Page View:466
Dimensions: 43 x 43 x 26mm, Weight: 26g, Max Power: 25W Today we're bringing you the datasheet pinout, features, datasheet, and application and more detailed information.The L298NN features low saturation voltage and overtemperature protection.

Transceiver NRF52840-DK: Equivalent

Release time:2023-09-16       Page View:464
Transceiver; 802.15.4 (Thread), ANT, Bluetooth® 5 Type.The nRF52840 DK (Development Kit) includes hardware, firmware source code, documentation, hardware schematics, and layout files. The nRF52840 DK is a hardware development platform used to design and develop application firmware on the nRF52840 System on Chip (SoC).

DS18B20+ Digital Thermometer: Unique 1-Wire Interface

Release time:2023-09-15       Page View:287
(Bulk Digital, Local 3V~5.5V Through Hole -55°C~125°C 1-Wire® ±0.5°C (±2°C) 12 b 1 (Unlimited)) Hi,guys. A brief intoduction to DS18B20+ Digital Thermometer: Unique 1-Wire Interface, which can be applied in many areas like thermostatic controls and industrial systems.

MAX7219CWG Display Driver Ultimate Guide: Datasheet Released

Release time:2023-09-15       Page View:342
Hello everyone, this article will take the mystery out of MAX7219CWG! A display driver known as the MAX7219CWG is frequently utilized in Industrial Controllers, LED Matrix Displays and so on. The MAX7219 is a constant current LED display driver IC that can power 7-segment LED displays, 64x64 LED matrices, or single LEDs...

Unleash Potential of PIC16F877A-I/P: Ultimate Embedded Solution

Release time:2023-09-15       Page View:458
14KB 8K x 14 FLASH PIC 8-Bit Microcontroller PIC® 16F Series PIC16F877A 40 Pin 20MHz 5V 40-DIP (0.600, 15.24mm)

TOP245YN AC-DC Power Converter: Circuit Diagram

Release time:2023-09-15       Page View:497
Today we're bringing you the datasheet pinout, features, datasheet, and more detailed information. The TOP245YN features Design Flexible, EcoSmart, and Integrated Of-line Switcher.
RFQ
BOM