EP3C55F484I7N Vs EP3C40F484C8N FPGA Comparison: Datasheet, Features

This post is about the Comparative Analysis of EP3C55F484I7N and EP3C40F484C8N

 Intel-EP3C55F484I7N-image

In the high-performance FPGA (Field-Programmable Gate Array) market, Altera's (now acquired by Intel and renamed Intel PSG) EP3C series has been attracting a lot of attention for its high performance and low power consumption. Today, we will compare and analyze two FPGAs, EP3C55F484I7N and EP3C40F484C8N.

 

Wait, what? What are FPGAsFPGAs are programmable integrated circuits that can be customized to perform specific functions by configuring the internal logic elements and interconnections. They are commonly used in fields such as telecommunications, automotive, aerospace, and industrial automation, where flexibility and reconfigurability are important.

 

 

EP3C55F484I7N and EP3C40F484C8N are both part numbers for specific FPGAs (Field-Programmable Gate Arrays) manufactured by Altera, which is now a part of Intel.

 

 

What is EP3C55F484I7N ?

Intel-EP3C55F484I7N-image


The EP3C55F484I7N is a member of the Cyclone III FPGA family. It has 55,000 logic elements (LEs) and comes in a 484-pin FineLine BGA (Ball Grid Array) package with an industrial temperature range. The "I7" in the part number represents the speed grade of the FPGA.

 

What is EP3C40F484C8N ?

Altera-EP3C55F484I7N-image


The EP3C40F484C8N is also part of the Cyclone III FPGA family. It has 40,000 logic elements (LEs) and comes in a 484-pin FineLine BGA package with a commercial temperature range. The "C8" in the part number represents the speed grade of the FPGA.

 

Features

Lowest Power FPGAs

■ Lowest power consumption due to:

■ TSMC low-power process technology

■ Altera® power-aware design flow

■ Low-power operation offers the following benefits:

■ Extended battery life for portable and handheld applications

■ Reduced or eliminated cooling system costs

■ Operation in thermally-challenged environments

■ Hot-socketing operation support

 

Design Security Feature

Cyclone III LS devices offer the following design security features:

■ Configuration security using advanced encryption standard (AES) with 256-bit

volatile key

■ Routing architecture optimized for design separation flow with the Quartus® II

software

■ Design separation flow achieves both physical and functional isolation

between design partitions

■ Ability to disable external JTAG port

■ Error Detection (ED) Cycle Indicator to core

■ Provides a pass or fail indicator at every ED cycle

■ Provides visibility over intentional or unintentional change of configuration

random access memory (CRAM) bits

■ Ability to clear contents of the FPGA logic, CRAM, embedded memory, and

AES key

■ Internal oscillator enables system monitor and health check capabilities

 

First, specifically, let's take a look at the basic specifications of these two FPGAs. The EP3C55F484I7N has 55K logic cells, while the EP3C40F484C8N has 40K logic cells. In digital signal processing and parallel processing-intensive applications, more logic cells mean more processing power. Therefore, from this perspective, the EP3C55F484I7N has an advantage in processing power.

 

Next, let's look at the memory resources of the two FPGAs. the EP3C55F484I7N provides 1.1MB of RAM resources, while the EP3C40F484C8N provides 1MB of RAM resources. Although the difference is small, the EP3C55F484I7N still has a slight advantage.

 

Moving on to clock resources, the EP3C55F484I7N provides 16 clock managers while the EP3C40F484C8N provides 12 clock managers. The clock managers can be used to implement more complex timing designs, so the EP3C55F484I7N may be better suited in applications where fine control of the clock is required.

 

However, in terms of the number of I/O units, the EP3C40F484C8N significantly exceeds the EP3C55F484I7N's 160 with 220. This means that the EP3C40F484C8N may have better performance in applications that require a large number of I/O interfaces, such as serial communications, video interfaces, and so on.

 

In addition, both FPGAs support a variety of protocols, including PCI Express, RapidIO, Gigabit Ethernet, and more. However, the EP3C55F484I7N supports the 10GBASE-KR interface, which is not available in the EP3C40F484C8N. This feature gives the EP3C55F484I7N a greater advantage in high-speed network applications.

 

EP3C55F484I7N and EP3C40F484C8NWhich is better?

Overall, the EP3C55F484I7N and EP3C40F484C8N are both excellent FPGAs, each with its own advantages in different application areas. In projects that require more processing power and memory resources, the EP3C55F484I7N may be more suitable. And in projects that require a large number of I/O interfaces or specific high-speed network interfaces, the EP3C40F484C8N may be superior. Therefore, when selecting these two FPGAs, the decision needs to be based on the actual application requirements.

 





Frequently Asked Questions

Does the price of EP3C55F484I7N devices fluctuate frequently?
The FPGAkey search engine monitors the EP3C55F484I7N inventory quantity and price of global electronic component suppliers in real time, and regularly records historical price data. You can view the historical price trends of electronic components to provide a basis for your purchasing decisions.

Related Articles

FT234XD-R Interface Bridge: Footprint, Datasheet, Alternatives

Release time:2023-09-15       Page View:426
FT234XD-R, a USB to serial UART interface with optimized packaging for smaller PCB designs (3mm x 3mm 12 pins DFN)! We wiil give you a brif introduction of its Footprint, Datasheet, Alternatives.

AD210AN Isolation Amplifier: Pinout, Applications, Datasheet

Release time:2023-09-12       Page View:474
The AD210AN is a Precision, Wide Bandwidth 3-Port Isolation Amplifier. This article will unlock its pinout, datasheet, parts comparison and more details about AD210AN.

LD1117S33TR Voltage regulator: PDF, Pinout, Alternatives

Release time:2023-09-12       Page View:645
Fixed Tin LD1117 PMIC 4 TO-261-4, TO-261AA LD1117S33TR--An adjustable and fixed low-drop positive voltage regulator! This article will reveal LD1117S33TR's pinout, datasheet, alternative and other information.

IRFZ44NL Transistors: Datasheet, Replacement

Release time:2023-09-12       Page View:502
Here are the following introduction to the advantages of IRFZ44NL: Advanced processing techniques to achieve,extremely low on-resistance per silicon area. This benefit,combined with the fast switching speed and ruggedized Device design,provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

LMD18200T 3A 55V Motor Controllers: Pinout, Datasheet

Release time:2023-09-12       Page View:217
LMD18200T:3A mA 13mA mA Motor Drivers 11 42V V 55V V2. This article will reveal the datasheet , pinout of the controller LMD18200T and other information like the distinction of LMD18200T and LMD18200T/NOPB you want to know.

ATMEGA328-PU MCU|PDF,Pinout,Atmega328-PU vs ATMEGA328P-AU

Release time:2023-09-12       Page View:524
ATMEGA328-PU:32KB 16K x 16 FLASH AVR 8-Bit Microcontroller ATmega Series ATMEGA328 28 Pin 20MHz 5V 28-DIP (0.300, 7.62mm). This article will include its pinout, features, datasheet and more detailed information about the difference between ATMEGA328-PU and ATMEGA328P-AU.

SN6505BDBVR IC transformer Driver: Pinout, PDF and Alternatives

Release time:2023-09-12       Page View:442
SN6505BDBVR : 6 Terminations2.25V~5.5V 6 Pin SN6505 Specialized Power Management ICs1 Outputs1 Functions.

ATMEGA1284P-MU Microcontrollers: Datasheet, Distinction

Release time:2023-09-12       Page View:642
128KB 64K x 16 FLASH AVR 8-Bit Microcontroller AVR® ATmega Series ATMEGA1284P 44 Pin 20MHz 44-VFQFN Exposed Pad. Today we're bringing you the datasheet pinout, features, datasheet, the difference between ATMEGA1284P-MU and ATMEGA1284P-MUR and more detailed information.

Qualcomm carrier aggregation technology, the best solution for 5G speed improvement

Release time:2022-11-25       Page View:563
Smartphones are known to have the ability to communicate online, play games, chase dramas, chat and read novels. They are true all-rounders in everyday life. But what most people don't know is that enabling these capabilities also requires something called baseband. Without it, the smartphone cannot connect to the internet.We will not repeat the pro...

Abandon 30 years of grudges! Japan and the United States jointly research 2nm, want to control the global semiconductor supply chain?

Release time:2022-11-25       Page View:460
According to recent news, Japan will establish a research base for a new generation of semiconductors, and jointly research 2nm semiconductor chips with the United States, which is expected to be widely used in artificial intelligence and other fields. Japanese Minister of Economy, Trade and Industry Hikaru Hagi said that the cooperation between J...

With the entry of new players, how can the dominant automotive CIS manufacturers maintain their leading position?

Release time:2022-11-25       Page View:450
In the past decade, CMOS image sensor (hereinafter referred to as CIS) is almost one of the fastest growing semiconductor products. Image sensor sales doubled from 2010 to 2019, according to ICInsights.In the CIS market, in recent years, the growth rate of the automotive application segment has been evident due to the increase in the number o...

Why is there a global chip shortage?

Release time:2022-11-25       Page View:544
With the development of 5g technology and artificial intelligence, as well as the trend of automobile intelligence, the demand for 5g radio frequency, PC, fingerprint recognition, car control, sensors and other chips is also growing rapidly. However, with the resumption of work, the rebound in car sales, and the increase in various demands, the pressure ...
RFQ
BOM