MPS MP9486AGN-Z: Datasheet, Features

Hi, friends. This post is about MP9486AGN-Z: A Versatile Step-Down Converter IC for Efficient Power Management

1c63e9959af6cf6e

Catalog

Introduction

MP9486AGN-Z Overview

MP9486AGN-Z Pinout

MP9486AGN-Z CAD MODEL

MP9486AGN-Z Features and Specifications

MP9486AGN-Z Applications

MP9486AGN-Z Block Diagram

MP9486AGN-Z Circuit

MP9486AGN-Z Price

Conclusion





Introduction:

The MP9486AGN-Z is a highly versatile step-down converter integrated circuit (IC) that offers efficient power management solutions for a wide range of applications. Designed by Monolithic Power Systems (MPS), this IC combines high performance with a compact form factor, making it suitable for various power conversion needs. In this article, we will explore the features, specifications, and potential applications of the MP9486AGN-Z.

 

MP9486AGN-Z Overview

100V 1A Step-Down Switching Voltage Regulator 8-Pin SOIC. 

The MP9486A is a high-voltage, step-down switching regulator capable of delivering up to 1A of continuous current to a load. It incorporates a high-side, high-voltage power MOSFET with a usual current limit of 3.5A. The wide input range of 4.5V to 100V enables a wide range of step-down applications, making it perfect for automotive, industrial, and lighting applications. For very quick response, hysteretic voltage-mode control is used. MPS's patented feedback control method reduces the number of external components necessary.


Switching frequencies of up to 1MHz enable for minimal component sizes. Thermal shutdown and short-circuit protection (SCP) ensure that operations are reliable and fault-tolerant. The MP9486A can be employed in battery-powered applications thanks to its 170A quiescent current.

The MP9486A comes in an SOIC-8 box with an exposed pad.


MP9486AGN-Z Pinout

MP9486AGN-Z-pinout

MP9486AGN-Z CAD MODEL

Symbol

MP9486AGN-Z-SYMBOL

Footprint

MP9486AGN-Z-FOOTPRINT

3D-Model

WPS图片-抠图



Features and Specifications:

The MP9486AGN-Z is a synchronous step-down converter that operates with a wide input voltage range and delivers a regulated output voltage with high efficiency. Some of the key features and specifications of the IC include:

 

Input Voltage Range: The MP9486AGN-Z supports input voltage ranging from 4.5V to 18V, making it compatible with a variety of power sources, such as batteries, adapters, and industrial power supplies.

 

Output Voltage Range: The IC provides a configurable output voltage range from 0.6V to 5.5V, allowing flexibility in meeting the requirements of different loads and applications.

 

High Efficiency: With its synchronous rectification architecture and optimized internal power MOSFETs, the MP9486AGN-Z achieves high efficiency levels, reducing power losses and enhancing overall system efficiency.

 

Current Mode Control: The IC utilizes a current mode control scheme that provides fast transient response and stable operation across varying load conditions.

 

Protection Features: The MP9486AGN-Z incorporates a comprehensive set of protection features, including overvoltage protection (OVP), overcurrent protection (OCP), and thermal shutdown, ensuring the safety and reliability of the system.

 

Applications:

The MP9486AGN-Z finds applications in various electronic systems that require efficient power conversion. Here are a few examples:

 

Portable Devices: With its wide input voltage range and compact form factor, the MP9486AGN-Z is suitable for powering portable devices like smartphones, tablets, portable gaming consoles, and wearable devices. It provides efficient power conversion, enabling longer battery life and reducing heat dissipation.

 

Industrial and Automotive Electronics: The IC's robust design and wide input voltage range make it ideal for industrial and automotive applications. It can power sensors, actuators, communication modules, motor control circuits, and other subsystems in industrial automation, automotive infotainment systems, and advanced driver-assistance systems (ADAS).

 

Networking and Telecommunications: The MP9486AGN-Z can be used in networking and telecommunications equipment, such as routers, switches, and base stations. It efficiently converts the input power to the desired voltage levels required by various components, ensuring stable and reliable operation.

 

Consumer Electronics: From smart TVs and set-top boxes to audio systems and gaming consoles, the MP9486AGN-Z can be utilized in a range of consumer electronic devices. Its high efficiency and voltage flexibility make it suitable for powering different subsystems within these devices.

 


MP9486AGN-Z Block Diagram

MP9486AGN-Z-block diagram


MP9486AGN-Z Circuit

MP9486AGN-Z-circuit


MP9486AGN-Z Price




Conclusion:

The MP9486AGN-Z is a highly versatile and efficient step-down converter IC that offers power management solutions for a wide range of applications. With its wide input voltage range, high efficiency, and comprehensive protection features, it provides reliable and stable power conversion. Whether used in portable devices, industrial systems, networking equipment, or consumer electronics, the MP9486AGN-Z delivers efficient power management, contributing to enhanced performance and extended battery life. Engineers and designers can leverage the capabilities of the MP9486AGN-Z to optimize power management in their applications, ensuring reliable and energy-efficient operation.

 

What are the advantages of using a synchronous rectification architecture in the MP9486AGN-Z?

 

The use of a synchronous rectification architecture in the MP9486AGN-Z step-down converter offers several advantages over conventional diode rectification. Here are some of the key benefits:

 

Improved Efficiency: Synchronous rectification replaces the diode rectifier with a low-resistance synchronous MOSFET. This MOSFET operates as a switch, turning on and off to direct current flow. By using a controlled switch instead of a diode, synchronous rectification significantly reduces power losses across the rectifier. This leads to improved overall efficiency of the step-down converter. The MP9486AGN-Z leverages this advantage to achieve higher efficiency levels, reducing wasted power and improving energy conversion.

 

Lower Voltage Drops: Diode rectifiers have inherent voltage drops across them, typically around 0.5V to 1V. These voltage drops cause power dissipation and energy loss. In contrast, synchronous rectification uses MOSFETs with low on-resistance. As a result, the voltage drops across the synchronous MOSFETs are significantly lower than diodes. This leads to higher voltage conversion efficiency and increased available output voltage for the load.

 

Reduced Heat Dissipation: The lower voltage drops in synchronous rectification result in reduced power dissipation and heat generation compared to diode rectification. As a consequence, the MP9486AGN-Z with synchronous rectification operates at lower temperatures, contributing to improved reliability and longevity of the device. It also reduces the need for additional cooling mechanisms, simplifying thermal management in the system.

 

Fast Switching Speed: Synchronous rectification MOSFETs have fast switching speeds compared to diodes, allowing for more precise control of the current flow. The MP9486AGN-Z takes advantage of this characteristic to achieve faster transient response and better regulation under varying load conditions. It enables the converter to quickly respond to load changes, maintaining stable output voltage with minimal voltage overshoot or undershoot.

 

Flexibility in Operating Frequency: Synchronous rectification provides flexibility in choosing the operating frequency of the step-down converter. Unlike diode rectifiers, which have fixed switching frequencies, synchronous rectification allows for higher switching frequencies. This flexibility enables the MP9486AGN-Z to operate at higher frequencies, reducing the size of external components such as inductors and capacitors, and enabling the use of smaller form factors in space-constrained applications.

 

Compatibility with Light Load Conditions: Diode rectifiers suffer from efficiency degradation at light load conditions due to the fixed voltage drops. In contrast, synchronous rectification maintains high efficiency even at low loads. The MP9486AGN-Z leverages this advantage to provide efficient power conversion across a wide range of load conditions, maximizing energy efficiency in applications that experience varying power demands.

 

By employing a synchronous rectification architecture, the MP9486AGN-Z step-down converter ensures improved efficiency, lower voltage drops, reduced heat dissipation, fast switching speeds, flexibility in operating frequency, and compatibility with light load conditions. These advantages make it an ideal choice for applications that require high-performance power management with minimal power losses.

 

How does synchronous rectification affect the size and cost of external components in the MP9486AGN-Z?

 

Synchronous rectification in the MP9486AGN-Z step-down converter can have an impact on the size and cost of external components in the following ways:

 

Smaller Inductor: Synchronous rectification allows for higher switching frequencies compared to diode rectification. Higher switching frequencies enable the use of smaller inductors while maintaining the same level of efficiency. Smaller inductors occupy less space on the circuit board, contributing to a more compact overall design. Additionally, smaller inductors tend to be less expensive than larger ones, potentially reducing component costs.

 

Reduced Output Capacitor Size: The faster switching speeds enabled by synchronous rectification can reduce the required output capacitance. The output capacitor helps smooth out the voltage ripple and stabilize the output voltage. With synchronous rectification, the reduced voltage ripple allows for a smaller output capacitor. This reduction in capacitance value can lead to cost savings and space efficiency.

 

Elimination of External Schottky Diode: In a synchronous rectification scheme, the need for an external Schottky diode, which is typically used in diode rectification, is eliminated. The low-resistance synchronous MOSFETs replace the diodes, reducing the number of external components required. This simplifies the overall circuit design, reduces component count, and potentially lowers the cost of the system.

 

Potential for Smaller PCB Size: The combination of smaller inductors, reduced capacitance requirements, and the elimination of external diodes can contribute to a more space-efficient PCB layout. The reduced component count and smaller component sizes associated with synchronous rectification can allow for a more compact design, potentially reducing the size and cost of the overall system.

 

It's important to note that while synchronous rectification can lead to size and cost reductions in certain external components, the specific impact will depend on the application requirements, desired performance, and the trade-offs made during the design process. It's always recommended to consult the datasheet, application notes, and design guidelines provided by the IC manufacturer to optimize the component selection and achieve the desired balance between size, cost, and performance in the MP9486AGN-Z-based power management system.

 



Related Articles

FT234XD-R Interface Bridge: Footprint, Datasheet, Alternatives

Release time:2023-09-15       Page View:426
FT234XD-R, a USB to serial UART interface with optimized packaging for smaller PCB designs (3mm x 3mm 12 pins DFN)! We wiil give you a brif introduction of its Footprint, Datasheet, Alternatives.

AD210AN Isolation Amplifier: Pinout, Applications, Datasheet

Release time:2023-09-12       Page View:474
The AD210AN is a Precision, Wide Bandwidth 3-Port Isolation Amplifier. This article will unlock its pinout, datasheet, parts comparison and more details about AD210AN.

LD1117S33TR Voltage regulator: PDF, Pinout, Alternatives

Release time:2023-09-12       Page View:649
Fixed Tin LD1117 PMIC 4 TO-261-4, TO-261AA LD1117S33TR--An adjustable and fixed low-drop positive voltage regulator! This article will reveal LD1117S33TR's pinout, datasheet, alternative and other information.

IRFZ44NL Transistors: Datasheet, Replacement

Release time:2023-09-12       Page View:502
Here are the following introduction to the advantages of IRFZ44NL: Advanced processing techniques to achieve,extremely low on-resistance per silicon area. This benefit,combined with the fast switching speed and ruggedized Device design,provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

LMD18200T 3A 55V Motor Controllers: Pinout, Datasheet

Release time:2023-09-12       Page View:217
LMD18200T:3A mA 13mA mA Motor Drivers 11 42V V 55V V2. This article will reveal the datasheet , pinout of the controller LMD18200T and other information like the distinction of LMD18200T and LMD18200T/NOPB you want to know.

ATMEGA328-PU MCU|PDF,Pinout,Atmega328-PU vs ATMEGA328P-AU

Release time:2023-09-12       Page View:526
ATMEGA328-PU:32KB 16K x 16 FLASH AVR 8-Bit Microcontroller ATmega Series ATMEGA328 28 Pin 20MHz 5V 28-DIP (0.300, 7.62mm). This article will include its pinout, features, datasheet and more detailed information about the difference between ATMEGA328-PU and ATMEGA328P-AU.

SN6505BDBVR IC transformer Driver: Pinout, PDF and Alternatives

Release time:2023-09-12       Page View:442
SN6505BDBVR : 6 Terminations2.25V~5.5V 6 Pin SN6505 Specialized Power Management ICs1 Outputs1 Functions.

ATMEGA1284P-MU Microcontrollers: Datasheet, Distinction

Release time:2023-09-12       Page View:642
128KB 64K x 16 FLASH AVR 8-Bit Microcontroller AVR® ATmega Series ATMEGA1284P 44 Pin 20MHz 44-VFQFN Exposed Pad. Today we're bringing you the datasheet pinout, features, datasheet, the difference between ATMEGA1284P-MU and ATMEGA1284P-MUR and more detailed information.

Qualcomm carrier aggregation technology, the best solution for 5G speed improvement

Release time:2022-11-25       Page View:563
Smartphones are known to have the ability to communicate online, play games, chase dramas, chat and read novels. They are true all-rounders in everyday life. But what most people don't know is that enabling these capabilities also requires something called baseband. Without it, the smartphone cannot connect to the internet.We will not repeat the pro...

Abandon 30 years of grudges! Japan and the United States jointly research 2nm, want to control the global semiconductor supply chain?

Release time:2022-11-25       Page View:460
According to recent news, Japan will establish a research base for a new generation of semiconductors, and jointly research 2nm semiconductor chips with the United States, which is expected to be widely used in artificial intelligence and other fields. Japanese Minister of Economy, Trade and Industry Hikaru Hagi said that the cooperation between J...

With the entry of new players, how can the dominant automotive CIS manufacturers maintain their leading position?

Release time:2022-11-25       Page View:450
In the past decade, CMOS image sensor (hereinafter referred to as CIS) is almost one of the fastest growing semiconductor products. Image sensor sales doubled from 2010 to 2019, according to ICInsights.In the CIS market, in recent years, the growth rate of the automotive application segment has been evident due to the increase in the number o...

Why is there a global chip shortage?

Release time:2022-11-25       Page View:544
With the development of 5g technology and artificial intelligence, as well as the trend of automobile intelligence, the demand for 5g radio frequency, PC, fingerprint recognition, car control, sensors and other chips is also growing rapidly. However, with the resumption of work, the rebound in car sales, and the increase in various demands, the pressure ...
RFQ
BOM