ATMEGA1284P-MU Microcontrollers: Datasheet, Distinction

  ATMEGA1284P-MU-main picture

 (128KB 64K x 16 FLASH AVR 8-Bit Microcontroller AVR® ATmega Series ATMEGA1284P 44 Pin 20MHz 44-VFQFN Exposed Pad)

Today we're bringing you the datasheet pinout, features, datasheet, the difference between ATMEGA1284P-MU and ATMEGA1284P-MUR and more detailed information.

 

Catalog

ATMEGA1284P-MU Pinout

ATMEGA1284P-MU CAD Model

ATMEGA1284P-MU Overview

ATMEGA1284P-MU Features

ATMEGA1284P-MU Applications

ATMEGA1284P-MU Alternatives

ATMEGA1284P-MU vs ATMEGA1284P-MUR

ATMEGA1284P-MU Block Diagram

ATMEGA1284P-MU Package

Datasheet PDF

Specifications

Product comparison

 

 

 

ATMEGA1284P-MU Pinout

 ATMEGA1284P-MU-pinout

ATMEGA1284P-MU CAD Model

Symbol

 

ATMEGA1284P-MU-symbol 

 

Footprint

 

 ATMEGA1284P-MU-footprint

 

3D-model

 

 ATMEGA1284P-MU-3d model

 

 

ATMEGA1284P-MU Overview

This Microcontroller comes in a 44-VFQFN Exposed Pad package. This Microcontroller has 32 I/Os. This Microcontroller is mounted using the Surface Mount mounting type. The 8-Bit core is the core of the MCU. There is a type of program memory called FLASH in the Microcontroller. The temperature range of this Microcontroller is within the range of -40°C~85°C TA. It is part of the ATmega series of electrical components. Microcontroller has abundant program memory size of 128KB 64K x 16. The AVR Core Processor powers the device and is one of its key features.

 

The device is RISC uPs/uCs/Peripheral ICs Type. During the manufacture of the IC chip, there is a number 44 of terminations. A 8-bit operation is performed by this part. MCU chip has NO DMA channels. 128kB is the memory size of the part. There are a number of alternatives to the base part number ATMEGA1284P that you can find. An effective performance can be achieved at a frequency of 20MHz. On the chip, there are 44 pins that are accessible. In total, there are 3 timers/counters on the device. It has a total of 8 ADC channels. This device uses 6 PWM channels to generate the voltage. There are 1 I2C channels included in the part, which has been designed for the purpose. As part of the part, 2 serial I/Os have been incorporated. 3 external interrupts are included in the eletrical part.


ATMEGA1284P-MU Features

44-VFQFN Exposed Pad package
Mounting type of Surface Mount
Microcontrollers subcategory

ATMEGA1284P-MU Applications

There are a lot of ATMEGA1284P-MU Microcontroller applications.

Removable disks

Robots

Routers

DVD\DV\MP3 players

Guidance-GPS

Sonography (Ultrasound imaging)

Glucose monitoring systems

Calculator

Televisions

Tape drives

 

 

 

ATMEGA1284P-MU Alternatives

ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P share the same features:

ATMEGA1284P-MU vs ATMEGA1284P-MUR

 

ATMEGA1284P-MU Block Diagram

 ATMEGA1284P-MU-block diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.


The AVR core integrates a comprehensive set of instructions with 32 versatile working registers. Each of these registers is directly linked to the Arithmetic Logic Unit (ALU), enabling the simultaneous access of two independent registers in a single instruction, executed within one clock cycle. This unique architecture not only enhances code efficiency but also achieves throughputs up to ten times higher compared to traditional CISC microcontrollers.

 

 

ATMEGA1284P-MU Package

ATMEGA1284P-MU-packaging 

Datasheet PDF

Please DOWNLOAD the datasheets and manufacturer documentation for the ATMEGA1284P-MU microcontroller.

 

Specifications

 

Product comparison

Differences between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA, ATmega644A, ATmega644PA, ATmega1284 and ATmega1284Pthe ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P share the same features:

ATMEGA1284P-MU-features

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P provide the following features:

16/32/64/128Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 512/1K/2K/4Kbytes EEPROM, 1/2/4/16Kbytes SRAM, 32 general purpose /O lines, 32 general purpose working registers, Real Time Counter (RTC), three (four for ATmega1284/1284P) flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented two-wire Serial Interface, a 8-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillatorand the Asynchronous Timer continue to run.

 

The device is manufactured using the high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the boot Flash section will continue to run while the Application Flash section is updated, providing true Reading-While-Writing operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

 

The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.


      Why ATMEGA1284P-MU is a preferred choice among microcontrollers?
      "The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P provide an extensive array of features that set them apart in the field of microcontrollers. With 16/32/64/128Kbytes of In-System Programmable Flash and Read-While-Write capabilities, 512/1K/2K/4Kbytes of EEPROM, and 1/2/4/16Kbytes of SRAM, these microcontrollers offer ample memory resources for versatile applications. Additionally, they boast 32 general purpose I/O lines and 32 general purpose working registers, providing flexibility in interfacing with external components.
      
      
      Moreover, the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P come equipped with a Real Time Counter (RTC) and three (four for ATmega1284/1284P) flexible Timer/Counters featuring compare modes and PWM capabilities. Communication is made seamless with 2 USARTs, a byte-oriented two-wire Serial Interface, and an SPI serial port. The inclusion of an 8-channel, 10-bit ADC with optional differential input stage and programmable gain further enhances the analog sensing capabilities of these microcontrollers.
      
      
      To ensure reliable operation, programmable Watchdog Timer with Internal Oscillator is integrated, along with IEEE std. 1149.1 compliant JTAG test interface for debugging and programming. For power efficiency, six software selectable power saving modes are available, catering to various power management needs.
      
      
      In summary, the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P stand out for their comprehensive feature set that addresses a wide range of application requirements, making them a preferred choice among microcontrollers.

7983655

Frequently Asked Questions

Question 1. Who acquired Atmel Corporation and what is the status of the brand and technology post-acquisition?
In 2016, Atmel Corporation was acquired by Microchip Technology Inc., a prominent supplier of microcontroller and analog semiconductors. Following the acquisition, the Atmel brand and technology have been consistently enhanced and marketed as integral components of Microchip's product lineup.
Question 2. What are the power consumption specifications at different operating modes for the microcontroller?
The power consumption specifications for the microcontroller in different operating modes are outlined below for a clock frequency of 1 MHz at 1.8V and 25°C: - Active mode: The power consumption is rated at 0.4 mA. - Power-down mode: The power consumption drops significantly to 0.1 µA, indicating a highly efficient low-power state. - Power-save mode: In this mode, the power consumption is slightly higher at 0.6 µA, but this includes the power usage of the 32 kHz real-time clock (RTC) module.
Question 3. What is the direct link to the manufacturer's website for more information?
The manufacturer's website for more information can be found at http://www.atmel.com.
Question 3. What is the direct link to the manufacturer's website for more information?
The datasheet for the electronic component has a file size of 627.46 Kbytes and spans across 32 pages.
Question 5. Who is the manufacturer of the electronic component?
The manufacturer of the electronic component in question is ATMEL, also known as ATMEL Corporation.
Question 6. What is the part number and description of the electronic component discussed in Passage_1?
In Passage_1, the electronic component discussed is the ATMEGA1284. It is an 8-bit Microcontroller with 16/32/64/128K Bytes In-System Programmable Flash.

Related Articles

CR123A battery,CR17345,18350,A23,16340:How To Choose a Best One?

Release time:2024-03-29       Page View:447
IntroductionCR123A batteriesare a type of lithium battery commonly used in various electronic devices, including cameras, flashlights, and medical equipment. They are known for their high energy density, long shelf life, and reliable performance. In this comprehensive guide, we will delve into the world of CR123A batteries, exploring their specifica...

MPXHZ6400AC6T1 Datasheet, Diagram, Applications

Release time:2024-03-29       Page View:340
MPXHZ6400AC6T1 MPXH6400A, 20 to 400 kPa, Absolute,Integrated Pressure SensorMPXHZ6400AC6T1DescriptionThe NXP MPXxx6400A series sensor integrates on-chip, bipolar op amp circuitryand thin film resistor networks to provide a high output signal and temperaturecompensation. The small form factor and high reliability of on-chip...

ATMEGA8A-AU Datahseet, Pinout, Specs, Price, Programming

Release time:2024-03-18       Page View:389
ATMEGA8A-AU 8-bit Microcontrollers - MCU AVR 8KB, 512B EE 16MHz 1KB SRAMLow-Power AVR 8-bit Microcontroller Data SheetIntroductionThe ATmega8A is a low-power CMOS 8-bit microcontroller based on the AVR®enhanced RISCarchitecture. By executing powerful instructions in a single clock cycle, the ATmega8A ...

2N4401 vs PN2222 Transistor|PDF, Pinout, Equivalent, Pros & Cons

Release time:2024-03-12       Page View:277
This article will compare the 2N4401and PN2222 transistors for datasheet, pinout, CAD-Model, equivalents, pros & cons

TSOP1738 Datasheet,Working Principle,Specs:TSOP1738 Vs TSOP1838

Release time:2024-03-11       Page View:779
Introduction:The TSOP1738 is an infrared (IR) receiver module widely used in remote control applications. It is designed to detect and demodulate infrared signals, allowing devices to receive commands or data wirelessly. In this article, we will explore the TSOP1738's datasheet, working principle, specifications, and compare it with the TSOP...

DLW5BTM142TQ2L Datasheet,Pinout,Applications

Release time:2024-03-06       Page View:252
Choke, Common Mode, DLW5B Series, 1.4 kohm, 2 A, 5mm x 5mm x 2.35mm DLW5BTM142TQ2L

DLW5BTM101SQ2L:ChokesDatasheet,Pinout,Features

Release time:2024-03-06       Page View:263
This post will introduce the details ofDLW5BTM101SQ2L for you, includingDLW5BTM101SQ2L data sheet, DLW5BTM101SQ2L pinout, DLW5BTM101SQ2L PDFDLW5BTM101SQ2LDescriptionDLW5BTM101SQ2LEquivalent CircuitDLW5BTM101SQ2LPackageDLW5BTM101SQ2LCAD-ModelDLW5BTM101SQ2LAlternative...

STM32F051C8T6TR MCU Datasheet, Pinout, Price

Release time:2024-03-04       Page View:479
ARM®-based 32-bit MCU, 16 to 64 KB Flash, 11 timers, ADC, DAC and communication interfaces, 2.0-3.6 VSTM32F051C8T6TR OverviewSTM32F051C8T6TR AlternativesSTM32F051C8T6TR CAD-Model SymbolFootprint3D-ModelSTM32F051C8T6TR PinoutSTM32F051C8T6TR Diagramclock treeSTM32F051C8T6TR Applicati...

PCF8563T/5 RTCs Datasheet, Pinout, Specification

Release time:2024-03-01       Page View:405
What is rtc PCF8563T/5,518? RTCs, or Real-Time Clocks, are electronic devices that are used to keep track of the current time and date. They have their own power source, usually a small battery, to maintain the timekeeping function even when the main power source is turned off.

MCIMX283DVM4B Processors: Datasheet, Pinout, Diagram

Release time:2024-02-29       Page View:351
This post will tell you what is MCIMX283DVM4B

BC548 vs BC337 NPN Transistor: Datasheet, Pinout, Circuit

Release time:2024-02-23       Page View:1184
BC548 and BC337 NPN transistors are two commonly used models that find applications in various circuits due to their reliable performance and ease of use.

BC547 vs S8050 vs S9014 Transistors Differences

Release time:2024-02-21       Page View:864
​Understanding the Differences Between BC547, S8050, and S9014 Transistors
RFQ
BOM